Tag Archive | HD 95338 b

Hymyile ja vilkuta — vieraat astronomit saattavat tarkkailla meitä

Eksoplaneettojen havainnoinnista on tullut parissa vuosikymmenessä rutiinia. Olemme löytäneet jo tuhansia planeettoja kiertämässä radoillaan Auringon galaktisen naapuruston tähtiä ja vaikka niistä jokainen onkin omalla tavallaan erityinen, oman aurinkokuntansa kiertolainen, olemme saaneet selville myös yleisiä lainalaisuuksia planeettojen ja niiden järjestelmien luonteesta ja ominaisuuksista.

Maapallon kokoista ja massaista planeettaa ei ole vielä havaittu kiertämässä maankaltaisella radalla toista auringonkaltaista tähteä mutta sellaisen löytyminen on luultavasti vain ajan kysymys. Meillä on teknologia maankokoisten planeettojen havaitsemiseen tarkkailemalla niiden kulkua tähtiensä editse mutta esteenä on vielä toistaiseksi niiden verrattaen pitkät kiertoradat aurinkojensa ympäri. Maankaltaisen planeetan havaitsemiseksi on tarkkailtava tähtiä usean ratakierroksen ajan ja havaittava useita ylikulkuja — se tarkoittaa vuosien keskeytyksetöntä havaintoprojektia. Kepler-avaruusteleskoopin havaintokampanjan kestoksi suunniteltiin juuri tästä syystä kolme vuotta mutta sekään ei riittänyt kaikilta ominaisuuksiltaan maankaltaisten planeettojen löytämiseen.


Ylikulkumenetelmä on ollut toistaiseksi kaikkein tehokkain tapa eksoplaneettojen havaitsemisessa. Vaikka ajatuksena on havaita vain planeetan varjo — havaitun valon hiuksenhieno himmeneminen planeetan kulkiessa tähden editse ja peittäessä pienen osan sen kirkasta pintaa — menetelmällä saadaan runsaasti tietoa planeettojen ominaisuuksista. Tärkeimpänä tietona saadaan planeetan koko mutta usean ylikulun perusteella voidaan määrittää planeetan kiertoradan ominaisuuksia ja arvioida planeetan fysikaalisia olosuhteita kuten lämpötilaa. Tässä blogissa olemme kohdanneet jo aiemmin kaksi esimerkkiä, HD 95338 b ja Gliese 357 c.

Oleellista on, että planeetta kulkee Maasta katsottuna tähden pinnan editse. Sen kiertoradan on siis oltava juuri oikeassa asennossa avaruudessa. Jos planeetta kiertää tähtensä verrattaen nopeasti muutamassa tai korkeintaan muutamassa kymmenessä päivässä, on noin prosentin todennäköisyys, että planeetan ylikulku on havaittavissa. Siten vain suunnilleen joka sadannen tähden kiertolaiset voidaan havaita Maasta käsin. Maankaltaisen kaukana tähtensä pinnasta kiertävän planeetan ylikulun havaitseminen on vielä sitäkin epätodennäköisempää — Maan ylikulun havaitsemistodennäköisyys on vain 0.04 promillea satunnaisesta suunnasta katsotuna. Mutta asetelman voi myös kääntää päälaelleen: voimme kysyä onko lähiavaruudessa olemassa tähtijärjestelmiä, joiden paikalliset tähtitieteilijät voisivat havaita Maan ylikulkumenetelmää hyödyntäen? Selvityksen mukaan, niitä on pienestä todennäköisyydestä huolimatta runsaasti.

Kuva 1. Venuksen ylikulku Auringon editse vuodelta 2012. Maan kokoisen planeetan varjo kaukaisen auringon edessä näyttäisi vieläkin pienemmältä ympyrältä, koska Venus on kuvassa verrattaen lähellä Maata. Kuva: NASA.

Sadan parsekin, eli noin 330 valovuoden etäisyydellä Auringosta on lukuisia tähtiä, joita kiertävien planeettojen astronomit voisivat havaita Maan ylikulun Auringon editse (1). Lisa Kalteneggerin laskelmien mukaan, sellaisia tähtiä on lähettyvillämme kaikkiaan 1004 perustuen lähitähtien tarkkoihin Gaia-avaruusteleskoopilla mitattuihin paikkoihin. Näistä valtaosa, noin 770 on punaisia M-spektriluokan kääpiötähtiä, koska ne ovat maailmankaikkeudessa ja galaksissamme kaikkein yleisimpiä tähtiä. Punaisten kääpiötähtien planeettojen elämän edellytykset saattavat olla hiukan heikompia kuin auringonkaltaisten tähtien, joten niille on luultavasti syntynyt vähemmän tähtitieteellisiin havaintoihin kykeneviä astronomeja mutta Kalteneggerin luettelon tähtien joukkoon mahtuu myös noin 60 auringonkaltaista, keltaista G-spektriluokan tähteä.

Kuva 2. Tähdet, joiden planeetoilla asuvat astronomit voisivat havaita Maan ylikulun Auringon editse. Tähtien ominaisuudet on esitetty etäisyyden ja pintalämpötilansa sekä kirkkautensa mukaisesti. Suurin osa tähdistä on punaisia kääpiötähtiä, joiden pintalämpötila on noin 3000K. Kuva: L. Kaltenegger et al.

Tämä tulos, luettelo tähdistä, joiden planeetoilta Maan voisi havaita, tarjoaa mielenkiintoisen mahdollisuuden jatkotutkimukselle. Voimme koettaa etsiä luettelon tähtiä kiertäviä planeettoja ja koettaa selvittää onko niiden kiertoradoilla maankaltaisia, potentiaalisesti elinkelpoisia kiviplaneettoja. Jos joukossa on maankaltaisia kiviplaneettoja, jotka kulkevat tähtiensä editse, saamme ensimmäistä kertaa havaintoja planeetoista, joiden astronomit voisivat havaita meitä tasa-arvoisesti, samoilla menetelmillä kuin me heitä. Voisimme tulevaisuuden instrumenteilla koettaa havaita näiden planeettojen kaasukehistä elämän merkkejä ja niiden astronomit puolestaan voisivat havaita Maan kemiallisen epätasapainotilan, joka aiheutuu siitä, että planeetallamme on mäntyjen, sillivalaiden, herkkutattien ja ihmisten täyttämä biosfääri.

Kehittyneemmät sivilisaatiot tuskin tarvitsevat ylikulkumenetelmäksi kutsuttua alkeellista, epäsuoraa menetelmää lähitähtien planeettojen tarkkailuun, vaan he voivat havaita planeettoja jättiläismäisillä, supertarkoilla laitteillaan aivan suoraan, kartoittaen niiden pintoja ja tutkien niiden sääolosuhteita. Ehkäpä jokin teknisesti kehittynyt sivilisaatio tarkkailee planeettaamme jo samalla resoluutiolla kuin Marsia kiertänyt MGS-satelliitti (Mars Global Surveyor) vuonna 2003 (Kuva 3.) saaden tietoa planeettaamme peittävästä biosfääristä. Mutta ihmiskunnan alkeellisen teknologian asteelle päässeen sivilisaation tähtitieteilijät olisivat rajoittuneita alkeellisiin, epäsuoriin havaintomenetelmiin aivan kuten mekin. Siksi on kiinnostavaa tietää minkä tähtijärjestelmien asukkaat voisivat nähdä olemassaolomme.

Kuva3. Maa ja Kuu havaittuna Marsin kiertoradalta käsin MGS-satelliitin toimesta vuonna 2003. Kuva: NASA.

Lopultakin, vain etäisyys meistä rajoittaa muiden sivilisaatioiden kykyä tehdä havaintoja Maasta ja planeettamme elämästä. Maapallolta havaitsijoiden teleskooppeihin kulkeva säteily heikkenee suhteessa etäisyyden neliöön, joten meidät havaitaan sitä helpommin mitä lähempänä havaitsijat ovat. Lähin mahdollinen paikka on tietenkin lähin eksoplaneetta, Proxima b, aivan viereisessä galaktisessa postinumerossa. Se tosin kiertää punaista kääpiötähteä, joiden järjestelmissä elämän edellytykset ovat luultavasti ainakin hiukan heikentyneitä. Voimme kuitenkin harjoittaa vain spekulointia ennen kuin saamme tarkasteltavaksemme muitakin esimerkkejä elävistä planeetoista. Siihen asti, kannattaa hymyillä — vieraat astronomit saattavat jo tarkkailla planeettaamme.


Kirjoitus on julkaistu ensimmäisenä Tähtitieteellinen yhdistys Ursan blogissa Eksoplaneetta hukassa.

Lähteet

  1. Kaltenegger et al. 2020. Which stars can see Earth as a transiting exoplanet? MNRAS, 499, L111.

Aavistuksen himmenevä tähti

Henry Draperin valtaisan tähtiluettelon kohde numero 95338 himmeni äkkiä hetkeksi. Aivan hitusen verran. Sen kirkkaus putosi seitsemän tunnin ajaksi vajaat kaksi promillea ennen palaamistaan takaisin normaaliksi, noin puoleen siitä kirkkaudesta, jolla Aurinko loistaa. Se olisi himmentynyt uudelleen, täsmälleen samalla tavalla, aina 55 päivän välein, mutta kukaan ei kyennyt tarkkailemaan tähteä niin pitkään. Maata kiertävä TESS avaruusteleskooppi tuijotti samaa tähtitaivaan aluetta vain 27 päivän ajan, kunnes kääntyi tarkkailemaan aikataulunsa mukaisesti seuraavaa aluetta, joten sen havainnot rekisteröivät vain yhden ainoan himmenemisen.

Mitättömältä vaikuttanut himmeneminen johtui kiertoradallaan vaeltavasta planeetasta HD 95338 b, joka sattui kulkemaan tähtensä editse (1). Pelkästään yhden ylikulun perusteella ei kuitenkaan olisi voinut päätellä mitä edes havaittiin.

Eksoplaneettojen havainnoinnissa ylikulkumenetelmän idea on ehkäpä helpoin ymmärtää. Ajatuksena on tarkkailla kohteena olevaa tähteä niin tiiviisti kuin mahdollista koettaen nähdä himmeneekö se hiukan sen editse radallaan kulkevien planeettojen estäessä murto-osan tähden säteilyä saapumasta Maahan ja teleskooppeihimme. Kuulostaa helpolta mutta käytännössä planeettojen etsintä ylikulkujen avulla on hämmästyttävän vaikeaa, koska emme tiedä minkä tähtien planeetat ovat oikeanlaisella radalla ja milloin ne kulkevat radallaan tähtensä editse. Yhdenkin havainnon tekoa varten on kyettävä havaitsemaan tuhansia tähtiä samanaikaisesti päivien ja kuukausien ajan. Sellainen onnistuu vain avaruusteleskooppien avulla.

Jos planeetta on kooltaan kymmenesosan tähdestä, sen ylikulku himmentää tähteä noin sadasosan. Maapallo on kooltaan noin prosentin Auringosta. Jos jonkin vierasta tähteä kiertävällä planeetalla asuvan sivilisaation tutkija tarkkailisi teleskoopillaan Aurinkoa havaiten Maan ylikulun, se tarkoittaisi kykyä nähdä Auringon himmeneminen noin promillen kymmenesosan verran. Tuhansia planeettoja löytäneelle Kepler avaruusteleskoopille sellainen tarkkuus oli mahdollista, joten tekniset sivilisaatiot kyllä kykenevät havaitsemaan Maan ylikulun — jos vain tarkkailevat Aurinkoa suunnasta, josta katsottuna Maa kulkee radallaan Auringon editse.

Kun havaitaan vain yksittäinen ylikulku, ei voida tehdä päätelmiä siitä, mitä on havaittu. Kyseessä voi olla suuri yksittäinen tähden pilkku tai niiden ryhmä taikka jonkin himmeän taustataivaan kaksoistähden tuottama efekti. Periaatteessa vaaditaan kaksi ylikulkuhavaintoa, jotta voidaan määrittää niiden välinen aika ja siten planeetan kiertoradan jakso — planeetan vuosi. Jotta vieraan sivilisaation tutkija voisi havaita Maan vuoden pituuden, hänen tulisi tarkkailla herkeämättä Auringon kirkkautta ylikulkujen varalta vähintään vuoden ajan. Käytännössä vieläkin pidempään.

Vaikka havaittaisiin kaksi ylikulkua, ne eivät välttämättä ole saman planeetan aiheuttamia. Ne voivat aiheutua kahdesta erillisestä suunnilleen saman kokoisesta planeetasta, jolloin kahden pienen himmenemisen rekisteröinti havaintoinstrumentin digitaalikameralla ei vielä riitä. Tarvitaan kaksi mittausta planeetan ratajaksosta, eli vähintään kolmen ylikulun havainnointi, jotta voidaan selvittää planeetan radan ominaisuuksia tai arvioida planeetan kokoa.

Maankaltaisen planeetan havaitsemiseen vaaditaan siis jatkuvaa auringonkaltaisen tähden kirkkauden havainnointia keskeytyksettä parin vuoden ajan. Sellainen ei voi olla mahdollista planeettamme pinnalta käsin. Maanpäällisillä teleskoopeilla voimme havaita tähtiä vain öisin, ja tyypillisesti vain osan vuodesta, jolloin havaintojen tekoon tarvitaan käytännössä paljon enemmän aikaa kuin kaksi ratajaksoa. Jos ylikulku sattuu väärään vuodenaikaan tai päivällä, se jää armotta havaitsematta. Siksi silmää räpäyttämättä taivasta tuijottavat avaruusteleskoopit, sellaiset kuin Kepler tai TESS, ovat parhaita instrumentteja eksoplaneettojen ylikulkujen havainnointiin ja niiden ominaisuuksien tutkimiseen.

Tähden HD 95338 tapauksessa ylikulkuja kuitenkin havaittiin vain yksi. Se oli onnellinen sattuma, koska TESS avaruusteleskooppi tuijotti tähden sisältämää taivaan aluetta vain 27 päivää. Yksittäinen seitsemäntuntinen ylikulku olisi aivan hyvin saattanut jäädä osumatta havaintojaksoon. Tiesimme kuitenkin etsiä planeetan merkkejä HD 95338:n havainnoista, koska olimme selvillä sen olemassaolosta jo entuudestaan.


HD 95338 sijaitsee 37 parsekin päässä Auringosta ja on siksi yksi Auringon lähinaapuruston tavallisista spektriluokan K oransseista kääpiötähdistä. Se ei loista niin kuumana kuin Aurinko, eikä ole aivan yhtä suuri massaltaan tai halkaisijaltaan, mutta se kuuluu galaksimme tavallisiin kääpiötähtiin, joden ympärillä on runsaasti tähden synnyn sivutuotteena muodostuneita planeettoja. Käytännössä voidaan olettaa, että jokaista tähteä kiertää planeetta tai planeetoja. Kysymys on vain siitä, voidaanko niitä havaita.

Teimme havaintoja kohteesta HD 95338 kahdella eri teleskooppeihin asennetulla spektrometrillä, joiden tarkoituksena on mitata tähden huojumista näkösäteen suunnassa planeetan vetovoiman vaikutuksesta. Yhdessä Calanin observatoriossa Santiagossa työskentelevien Matias Diazin ja James Jenkinsin sekä useiden muiden tutkijoiden kanssa, olimme havainneet tähteä HARPS instrumentilla La Sillan observatoriossa sekä Las Campanasin observatorion PFS instrumentilla.

Tiesimme havaintojen perusteella, että tähteä kiertää vähintäänkin kaksi kertaa Neptunusta massiivisempi planeetta 55 päivän kiertoradalla (1). Muuta emme tienneet ja planeetta näytti olevan vain yksi monista tavanomaisista kaasuplaneetoista kiertämässä lähitähtiä. Olimme keskustelleet löydön julkaisemisesta mutta se ei vaikuttanut niin kiinnostavalta, että kenenkään kannattaisi käyttää viikkoja tieteellisen julkaisun huolelliseen valmisteluun.

Sitten TESS muutti kaiken.

Radiaalinopeushavainnoista saa selville vain planeetan minimimassan, koska sen ratatason kallistuskulma jää tuntemattomaksi. Jos kuitenkin havaitaan planeetan ylikulku (Kuva 2.), radan kallistuskulma selviää hetkessä — se on silloin noin 90 astetta taivaan tasoon nähden, koska rata kulkee täsmälleen tähden ja havaitsijan välistä. Selvisi, että HD 95338 b oli massaltaan lähes täsmälleen kaksi kertaa Neptunusta suurempi ja siten luultavasti suhteellisen tyypillinen kaasuplaneetta.

Kuva 2. Tähden HD 95338 raskaasti prosessoidut suhteelliset kirkkaushavainnot TESS-avaruusteleskoopin havaintojaksolta 10. Havaintosarjassa näkyy selvästi tähteä kiertävän planeetan aiheuttama 7 tuntia kestävä noin kahden promillen suuruinen himmentymä. Kuva: M. Diaz, M. Tuomi.

Mutta ylikulusta selvisi myös planeetan halkaisija, joka osoitti sen olevan Neptunuksen kanssa saman kokoinen. Kahden Neptunuksen massa oli siis pakkautunut vain yhden Neptunuksen kokoiseksi planeetaksi.

Toisin kuin Neptunus, jonka koostumuksesta suunnilleen 20% on kaasumaista vetyä ja heliumia, HD 95338 b on koostunut likimain kokonaan vetyä ja heliumia raskaammista aineksista. Havainnot planeetan koosta ja massasta on selitettävissä parhaiten kappaleella, joka koostuu jäästä. Olemme siis löytäneet valtaisan, noin 40 kertaa Maapalloa massiivisemman, lumipallon kiertämässä tähteä 120 valovuoden päässä meistä.

Se ei tosin muistuta lainkaan tavanomaisia lumipalloja, sillä planeetan vetovoima on valtaisa ja jää on kovassa paineessa hyvin erilaista kuin Maapallon lauhkeissa olosuhteissa. Lisäksi, noin 130 celsiusasteen lämpötilassa planeetta ei voi olla jäässä pinnaltaan — eikä niin massiivisella kappaleella voi Neptunuksen tapaan edes olla kiinteää pintaa.

HD 95338 b ei ole aivan tavaton tunnettujen eksoplaneettojen joukossa mutta on vaikeaa selittää miten jokin kappale voisi kasata 40 Maapallon edestä jäätä itseensä keräämättä vetovoimansa avulla ympärilleen paksua vedyn ja heliumin vaippaa, kuten Jupiter ja Saturnus. Emme osaa selittää miten jättiläismäiset lumipallot syntyvät. Se kuvastaa sitä, miten puutteellisia tietomme planeetoista, niiden synnystä ja kehityksestä ovat.

Mutta HD 95338 b:n löytöprosessi kuvastaa myös toista asiaa. Se kertoo, että puhtaalla tuurilla on edelleen merkittävä osuus tähtitieteessä. Koskaan ei voi tarkkaan tietää mitä onnistumme havaitsemaan. Emme todellakaan odottaneet törmäävämme massaltaan 40 Maapallon suuruiseen lumipalloon kaukana avaruudessa.


Kirjoitus on julkaistu ensimmäisenä Tähtitieteellinen yhdistys Ursan blogissa Eksoplaneetta hukassa.

Lähteet

  1. Diaz et al. 2020. The Magellan/PFS Exoplanet Search: A 55-day period dense Neptune transiting the bright (V=8.6) star HD 95338. Monthly Notices of the Royal Astronomical Society, submitted.