Tag Archive | 51 Pegasi

Matka tähtitieteen rajamaille

Jotkut henkilökohtaiset valinnat ovat merkityksellisiä, toiset eivät. Tietämättä lainkaan mitä haluaa tehdä, kun kasvaa isoksi, on yksi mahdollisuus vain viivyttää kaikkia valintoja ja prokrastinoida, sekä mennä sieltä, missä aita on matalin. Kukaan ei onnekseni koskaan vaatinut minua tekemään päätöksiä siitä, minkälaiselle uralle suuntautuisin työelämässä. Kukaan ei edes puhunut työstä, uravalinnoista, tai siitä, miten aikuisiässä lähes jokainen on pakotettu kamppailemaan palkkarengin roolissa henkensä pitimiksi. Olin suojattuna perinteisessä ydinperheessä, jossa minua kannustettiin tekemään juuri sitä, mitä halusin. En vain halunnut ainuttakaan ammattia, koska ei tiennyt ainuttakaan kiinnostavaa työtä. Niinpä menin lukioon muiden mukana tietämättä edes vaihtoehdoista. Samalla luin kaiken kiinnostavan populaaritieteen, mitä käsiini sain pienestä espoolaisesta kirjastosta, joka on epäilemättä nykyajan näköalattomassa ilmapiirissä lakkautettu tai ainakin lakkautusuhan alla.

En tajunnut koskaan edes sitä yhteiskunnallemme normatiivista ajatusmallia, jonka mukaan kaikilla on oltava jonkinlainen ura, jonka vuoksi on uhrattava kaikki ihmiselle luontaisesti tärkeä. En tajunnut, että sen uran tarkoituksena on määrittää ihmisten paikka yhteiskunnassa ja toimia käyntikorttina, joka kertoo ihmisestä kaiken tarpeellisen, mitä hänestä tarvitsee tietää. En tajunnut myöskään rahan tavoittelun roolia pitämässä ihmisiä kurissa, estämässä heitä vaatimasta parempaa yhteiskuntaa. En tajunnut mikä merkitys yleisellä narratiivilla työnteon merkityksestä on siinä, että ihmiset tavoittelevat aina vain suurempia rahallisia palkintoja oman terveytensä kustannuksella kieltäen itseltään jopa mahdollisuuden levätä. Samalla he ampuvat itseään jalkaan, koska kiireiseillä ihmisillä ei ole mahdollisuutta osallistua aktiivisesti yhteiskunnan parantamiseen. He uurastavat aina vain kovemmin saadakseen pienempiä palkintoja. Se kaikki oli minulle samantekevää, koska ajatukset työstä, urasta tai rahan hankkimisesta eivät sopineet päähäni miltään osin. Siihen maailman aikaan 1990-luvulla espoolaiset teinit eivät ajatelleet eivätkä olleet poliittisesti aktiivisia, vaan toteuttivat itseään vailla huolta huomisesta.

Jälkikäteen katsottuna huomaan ymmärtäneeni jotakin isoisäni saatua lunta katolleen ja vaivuttua heikentyneen fyysisen kunnon myötä vanhuuden huomaan. Muistan hänen sanoneen, miten ”sitä tietää tulleensa vanhaksi, kun ei jaksa enää tehdä työtä”. Lausahdus jäi mieleeni, koska siinä oli jotakin minulle vierasta. Aivan kuin työ ja toimeliaisuus olisivat ihmistä määrittäviä tekijöitä, joita vailla sitä on enää pelkkä vaivainen vanhus. Isoisäni oli tietenkin aikansa lapsi ja hänelle työ varmasti olikin ihmiselämää määrittävä tekijä mutta miksi niin pitäisi olla edelleenkin, kun koneemme tekevät tunnissa saman työn, johon ruumiillisen työn tekijältä aiemmin kului kuukausi? Ja ennen kaikkea, miksi työn tulisi kertoa tekijästään?

Niinpä jätin työn ja uran tavoittelun muille ja keskityin muuhun. En kuitenkaan lukio-opintoihin, jotka tuntuivat vaivattomilta ja osaksi epäkiinnostavilta ja onnistuin luovimaan koko koulutusasteen läpi tekemättä juuri mitään opintojeni eteen. Vuonna 1996 kiinnostukseni tähtitieteeseen kuitenkin heräsi täysin odottamattomalla tavalla. Luin Helsingin Sanomien kuukausiliitteen artikkelin juuri havaituista eksoplaneetoista kiertämässä lähitähtiä ja herätin suureksi osaksi vailla kohdetta olleen orastavan kiinnostukseni tieteeseen. Muistan valtaisan pettymyksen tunteen, kun riensin lukemaan lisätietoja eksoplaneetoista huomatakseni vain, että niistä ei kirjoitettu missään. Vasta ensimmäiset planeetat oli havaittu, joten niiden olemassaolo ei ollut varsinaisesti voinut ehtiä yhteenkään oppikirjaan tai populaaritekstiin. Tiedonjanoni sai odottaa juotavaa.


Tiedonjano on hirvittävä peto. Se on ajanut tutkijat tekemään mahdottomasta mahdollista, saanut tutkimusmatkailijat vaarantamaan henkensä matkoillaan maailman ääriin ja pakottanut lukemattomat akateemisen maailman merkkihenkilöt puskemaan läpi harmaan kiven heidän haaliessaan tietoa kiinnostuksensa kohteista. Petoa ei voi kahlita. Se ajaa ennemmin uhrinsa hulluksi kuin kesyyntyy. Ja aina, kun tiedonjanoinen onnistuu oppimaan osittaisen vastauksen tärkeään tieteelliseen kysymykseen, hän saa selville kaksi muuta aivan yhtä tärkeää kysymystä vailla vastausta.

Kuinka monta planeettaa galaksissamme on? Kuinka moni niistä on olosuhteiltaan lauhkea ja miellyttävä kuten Maa? Kuinka monen pinnalla virtaa nestemäinen vesi? Kuinka monen geokemialliset prosessit ovat synnyttäneet eläviä organismeja? Vielä 1990-luvulla emme osanneet antaa minkään tarkkuuden vastausta yhteenkään näistä kysymyksistä. Vaikka ensimmäinen eksoplaneettalöytö olikin tehty jo vuonna 1988, se pysyi verrattaen tuntemattomana, koska vain harva astronomi uskoi löydön olleen oikea. Havaintovirheiden mahdollisuus on tietenkin aina olemassa mutta paradigmaa muuttavan löydön kohdalla on syytä noudattaa erityistä varovaisuutta. Edellinen varmennettu planeettalöytö oli kuitenkin tehty jo yli puoli vuosisataa sitten vuonna 1930, kun Clyde Tombaugh onnistui havaitsemaan ensi kertaa Pluton melkoisen sattuman kautta. Sen jälkeen Peter van de Kampin epäonninen Barnardin tähden saaga vei uskon siihen, että planettoja voitaisiin löytää lisää ja vain harva suostui uhraamaan uransa yrittämällä. Yksi heistä oli Bruce Campbell, joka teki havainnon planeetasta Gamma Cephei A b (1) ja vaikka tulos ei varsinaisesti auttanut häntä urallaan, se kuitenkin auttoi eksoplaneettojen aikakauden alkuun.

Näemme näkymättömän

Taivaan tähdet ovat varmasti omien planeettakuntiensa keskuksia mutta emme voi saavuttaa niistä koskaan minkäänlaista tietoa. Kuka muka kykenisi havaitsemaan pienen kivenmurikan valtaisan, kuumana hehkuvan plasmapallon vierestä, valovuosien päästä meistä? Vaikka varhaiset kopernikaanisen mullistuksen tieteilijät jo ymmärsivätkin taivaan tähtien olevan toisia aurinkoja, he tuskin osasivat visioida keinoja tutkia niitä aikakauden tiedoilla fysiikasta ja erityisesti astrofysiikasta. Giordano Bruno, 1500-luvun italialainen munkki ja taivaan järjestyksestä kiinnostunut filosofi, ainakin omaksui aurinkokeskeisen kosmologisen mallin nopeasti ja esitti muiden taivaan tähtien olevan samanlaisia omien maailmankaikkeuksiensa keskuksia kuin Aurinkokin. Bruno teki yleistyksen yhden ainoan esimerkin perusteella, ja se sattui osumaan oikeaan. Hän valitettavasti suoriutui heikommin muun ajattelunsa kommunikoinnissa ja poltettiin elävältä inkvisition liekeissä kerettiläisyytensä vuoksi. Brunon ajatus jätti kuitenkin jälkensä kirjallisuuteen ja tuleviin tutkijasukupolviin.

Historiallisesti tähdet ovat olleet vain taivaan kiinteitä valopilkkuja, joiden suhteen vaikkapa planeettojen liikettä on kätevää määrittää. Planeetat vaeltavat taivaalla suhteessa kiinteään taustataivaaseen ja sen tähtiin, joten tähdet ja planeetat erotettiin toisistaan jo varhain ihmissivilisaation historiassa. Tähdet loistavat vain valopisteinä — jotkut kirkkaampina, toiset himmeämpinä — ja niistä oli pitkään täysin mahdotonta saada juuri mitään tietoa. Vasta 1800-luvun tieteelliset innovaatiot, kuten spektriviivojen havaitseminen ja valokuvauksen keksiminen, auttoivat selvittämään tähtien saloja.

Planeetat eivät loista valoa, koska niiden sisuksissa energiaa muodostuu vain vähän ja sekin heikoissa prosesseissa, kuten radioaktiivisessa hajoamisessa tai kaasuvaipan aineen differentioitumisessa kerroksiksi. Tähdissä taas keveät vety-ytimet, eli protonit, yhtyvät toisiinsa ja muodostavat heliumiksi kutsutun kokonaisuuden, joka on sen muodostumiseen tarvittavia protoneita keveämpi. Massan erotus muuttuu tähdissä energiaksi suoraan Albert Einsteinin kuuluisimman yhtälön mukaisesti. Ydinfuusioksi kutsuttu prosessi on niin energeettinen, että tähdet on helppoa nähdä jopa kymmenien tai satojen valovuosien etäisyydeltä paljain silmin, vaikka vain osa säteilystä vapautuu näkyvänä valona. Tähden valoa havaitsemalla taas on hyvin vaikeaa saada selville onko sen kiertoradoilla pienempiä planeetoiksi luokiteltavia kappaleita. Tähtitieteilijät kuitenkin keksivät vuosikymmenten saatossa keinoja tutkia planeettojen vaikutusta tähdestä havaintolaitteisiimme saapuvaan valoon.


Turun yliopiston kampukselle vievien portaiden päässä kuuluu kaiuttimesta maailmankaikkeuden taustasäteilyn kohinaa. Tai ainakin kuului. Kiivettyäni ensi kertaa tiedon portaat hämmennyksen ja uteliaisuuden valtaamana, saavuin maailmaan, joka teki vaikutuksen niin viisaudellaan ja osaamisellaan kuin kaoottisuudellaan ja välinpitämättömyydelläänkin. Kaikki tuntuivat olevan kiireisiä akateemisissa puuhissaan, opettaen, oppien tai tutkien. Samalla kukaan ei ollut kiinnostunut yksittäisen opiskelijan suoriutumisesta tai välittänyt siitä saiko hän suoritettua kursseja aikataulun mukaisesti. Vuonna 1998 sellaista aikataulua ei edes ollut — tai ainakaan en ollut aikatauluista tietoinen, koska kukaan ei tullut kertomaan, enkä tietenkään osannut kysyä. Yliopisto tuntui omituiselta, vieraalta maailmalta, johon totuttelu otti aikansa. Oli tarkoitus opiskella, istua luennoilla kuunnellen parrakkaiden setien horinoita ja suorittaa tenttejä saadakseen kurssisuorituksia opintorekisteriin. Se kaikki tuntui hämmentävältä, koska kukaan ei varsinaisesti neuvonut mille kursseille kannattaisi osallistua tai mikä oli tärkeää ja mikä ei. Huomaan ajoittain itsessäni edelleen sen saman hämmennyksen akateemisen maailman kaoottisissa pyörteissä.

Kuva 1. Turun yliopiston päärakennus. Kuva: turku.fi/utu.fi.

Opiskelin lähinnä mitä halusin ja hiljalleen sitten vain luovuin epäkiinnostavista sivuaineista, kuten tietojenkäsittely ja kemia. Fysiikassa en jaksanut perehtyä materiaalitieteeseen tai kvanttioptiikkaan enkä ollut kiinnostunut elektroniikasta tai muustakaan laitteiden rakentamisesta. Minua kiinnostivat matematiikka, tilastolliset data-analyysimenetelmät, eksoplaneetat ja astrobiologia. En kuitenkaan kokenut oppivani kuin vain joitakin hyödyllisenä pitämiäni asioita tilastollisista menetelmistä — aihealue oli hylätty yhteiskuntatieteellisen tiedekunnan huoleksi ja luonnontieteissä oli vaihtoehtona vain käydä yksi kurssi ja oppia loput itse. Kiinnostuin nopeasti aikasarjojen analysoinnista — siinä menetelmäpuolta oli laiminlyöty jo vuosien ajan ja viimeiset edistysaskeleet juonsivat juurensa 1970- ja 80-luvuille. Innovaatioksi riitti soveltaa 1950-luvun ajatuksia ja hyödyntää prosessissa tuoreita edistysaskeleita laskentakapasiteetissa. Niinpä ajauduin, kuin vahingossa, tutkimaan eksoplaneettoja, niiden syntyä ja havaitsemista, sekä ominaisuuksia. Ohjausta ei juurikaan ollut saatavilla mutta se ei estänyt opiskelua, vaan vain työpaikan saannin. Vuosituhannen vaihteessa ja sen jälkeisinä vuosina Suomessa ei ollut ainuttakaan eksoplaneetoista kiinnostunutta tutkijaa. Tai ei ainakaan sellaista, joka olisi tehnyt alalla aktiivisesti tutkimusta.


Muualla oli toisin. Vastaväitelleet, historian painolastia pelkäämättömät nuoret tutkijat olivat koko 1980-luvun pohtineet keinoja tehdä näkymättömästä näkyvää rakentaen havaintoinstrumentteja ja suunnitellen eksoplaneettojen havaitsemista olemassaolevilla teleskoopeilla. Doppler-ilmiöön perustuva spektroskooppinen havaintomenetelmä oli saamassa tuulta purjeisiinsa tutkijoiden kehittäessä tarkempia menetelmiä mitata spektriviivojen paikkoja suhteessa valitsemiinsa mittatikkuihin. Paul Butler käynnisti vuonna 1987 yhdessä Geoffrey Marcyn kanssa Lick-Carnegien eksoplaneettojen havaintoprojektin, joka on pisimpään käynnissä ollut moderni eksoplaneettojen havaintokampanja. Alaa vain haittasivat alkukankeudet, koska valtaosa tähtitieteen tutkijoista piti eksoplaneettojen etsintää ajan hukkana. Harva ajatteli sen olevan mahdollista 1980-luvun lopun havaintolaitteilla.

Taustalla oli perusteeton näkemys Aurinkokunnasta tyypillisenä planeettakuntana. Tähtiä lähellä kiertävien kiviplaneettojen havaitseminen olisi ollut täysin mahdotonta niiden pienen massan vuoksi ja jättiläisplaneettojen havaitseminen olisi vaatinut vuosikymmeniä kestävän havaintokampanjan niiden pitkien kiertoaikojen takia. On tavallaan ymmärrettävää, että tutkijatkin sortuvat tekemään yleistyksiä pohjautuen vain yhteen esimerkkitapaukseen mutta samalla jälkikäteen ilmiselvät ajattelun vääristymät tuntuvat uskomattomilta. Silti, jokaisella tutkijasukupolvella on omat ennakko-oletuksensa, joiden kyseenalaistaminen etenee vain hyvin hitaasti, koska niiden olemassaoloa ei tiedosteta. Kaikeksi onneksi jotkut 1900-luvun alkupuoliskon tähtitieteilijät ymmärsivät yhden esimerkin perusteella tehtyjen ekstrapolointien vaarat. Otto Struve oli yksi heistä todeten, että ei ole mitään syytä olettaa ettei muissa planeettakunnissa olisi massiivisia kaasuplaneettoja kiertoradoilla lähellä tähtiä. Struven syyt spekuloida asialla olivat pragmaattiset — hän ymmärsi Doppler-spektroskopian mahdollistavan jättiläisplaneettojen havainnoinnin vain, jos niiden radat olisivat lyhyitä.

Doppler-spektroskopian ajatus on periaatteeltaan hyvin yksinkertainen. Koska planeettoja oli mahdotonta havaita suoraan niiden himmeyden vuoksi, oli tyydyttävä havaitsemaan planeettojen vaikutusta tähdistä havaintolaitteisiimme saapuvaan valoon. Gravitaatiovoima ja Johannes Keplerin keksimät liikelait tarjosivatkin siihen keinonsa. Tähti ja planeetta nimittäin kiertävät yhteisen massakeskipisteensä ympäri, ja vaikka planeetta on aina massaltaan valtavasti tähteä pienempi, sen vetovoima saa tähdenkin heilahtelemaan mitättömältä tuntuvan määrän avaruudessa. Järjestelmän massakeskipiste on tyypillisesti tähden pinnan sisäpuolella mutta sittenkin heilahtelulla on havaittavia vaikutuksia Christian Dopplerin mukaan nimetyn fysikaalisen ilmiön vuoksi. Doppler havaitsi, että aaltoliikkeen lähteen liikkuessa meitä kohti sen taajuus näyttää kasvavan, kun taas sen liikkuessa meistä pois päin taajuus näyttää pienenevän. Tähtien tapauksessa valo on sellaista aaltoliikettä ja taajuuden muutokset vastaavat säteilyn värin hiuksenhienoja muutoksia sinisemmäksi tai punaisemmaksi. Tarvittiin vain jokin tapa mitata tarkasti tapahtuvia muutoksia planeetan kiertäessä tähteä ja planeetan ominaisuuksien määrittäminen tuli mahdolliseksi.


Vastavalmistuneena maisterina olin vuonna 2004 samanaikaisesti täynnä intoa ja hämmennystä. Mitä minun nyt olisi tarkoitus tehdä? Halusin jatkaa opintojani ja ryhtyä kirjoittamaan väitöskirjaa mutta minkäänlaista tapaa rahoittaa tutkimusta ei ollut näköpiirissä. Pohjimmiltaan kyse oli edelleenkin vain siitä, etten tiennyt mitä haluaisin tehdä, kun kasvan isoksi, joten kieltäydyin ajattelemasta asiaa ja jatkoin opiskelua. Ryhdyin jatko-opiskelijaksi siitäkin huolimatta, että se teki vaikkapa työttömyyskorvauksen saannista mahdotonta tilanteessa, jossa nuorelle tähtitieteilijälle ei ollut olemassa minkäänlaista työpaikkaa ja jatko-opiskelijan katsottiin ”työllistyvän omassa työssään”. Aivan kuin kirjautuminen opiskelijaksi saisi ihmisen elämään pelkällä pyhällä hengellä. En kuitenkaan osannut asettaa tilannetta laajempaan poliittiseen kontekstiinsa, jossa sosiaaliturvajärjestelmästä on tehty väline kontrolloida huono-osaisten ihmisten elämää — se on järjestelmä, jonka ei ole tarkoituskaan antaa vain taloudellista turvaa. Minutkin pakotettiin töihin, joista en nauttinut ja joissa en ollut parhaimmillani. Sain raavittua elantoni satunnaisista opettajan sijaisuuksista ylä- ja toisella asteella ja tarjoamalla rahaa vastaan yksityisopetusta hyväosaisemman väen jälkikasvulle. Opiskelun etenemistä tilanne tietenkin vain hidasti ja vaikeutti.

Olin kaikesta huolimatta jo ollut valtavan onnekas. Olin saanut (likimain) maksuttoman koulutuksen johtaen aina korkeakoulututkintoon ja opiskeluani oli vieläpä tuettu taloudellisesti valtion toimesta. Miljoonilta minua älykkäämmiltä ihmisiltä puuttuu sama mahdollisuus mutta siivosin sen ajatuksen mielestäni kiusallisena maton alle. Kyllähän ihmisen kohtalo on aina hänen omissa käsissään, kun kerran valtavirtapoliitikot niin sanoivat. Paitsi silloin, kun ei ole. Vuoden 2006 puolella tutkimusrahoitusta oli edelleen mahdotonta saada, koska kiinnostukseni aihe oli eksoplaneetat ja niiden havaitseminen — sillä alalla ei Suomessa ollut edelleenkään ainuttakaan ammattitutkijaa, eikä tähtitieteen arvostus varsinaisesti näkynyt muutoinkaan alan resursseissa. Ilman rtutkimusyhmää ja käytännössä jopa ohjausta olin akateemisen maailman heittopussi, itsenäisesti opiskeleva haihattelija, jonka mahdollisuudet uraan tai edes palkkaan olivat haihtuneet ilmaan jo ennen kuin ehdin tavata kiinnostukseni kohteena olevan eksoplaneetan koordinaatteja.

Tilanteeni muuttui, kun sain vihdoin vuoden 2006 syksyllä mahdollisuuden palkalliseen työskentelyyn tutkijana. Se tosin tarkoitti alan vaihtoa — ryhdyin Suomen ympäristökeskuksen tutkijana mallintamaan maaperän hiilikiertoa ja sitä, mitä vaikutuksia sillä on ilmastonmuutokseen. Verrattaen turvallisessa määräaikaisessa palkkatyössä saatoin suorittaa tohtoriopintoni kohtuullisen nopeassa tahdissa loppuun asti ja kirjoitin väitöskirjan valmiiksi alle neljässä vuodessa vapaa-ajallani julkaisemieni kahden tähtitieteen artikkelin turvin. Aiheena oli sovellettu matematiikka ja useasta erilaisesta lähteestä saatujen havaintojen yhdistämisen informaatiosisältö ja koherentti mallintaminen.

Tutkijanurani ei lopultakaan jatkunut ympäristötieteiden parissa kuin vain muutaman tuotteliaan vuoden verran. Olin mukana kirjoittamassa yhteensä noin pariakymmentä tieteellistä artikkelia maaperän hiilen dynamiikasta ja biokemiasta, kun sain mahdollisuuden palata tähtitieteen pariin. Hertfordshiren yliopiston tutkija David Pinfield oli nähnyt kaksi vuonna 2009 eksoplaneetoista ja niiden havaitsemisesta julkaisemaani paperia ja otti minuun yhteyttä mainostaen sitä, miten hänellä oli tarjolla projektirahoitusta eksoplaneettatutkimuksen parissa tehtävään tutkimukseen Englannissa. Hain paikkaa ja allekirjoitin työsopimuksen joulukuussa vuonna 2010. En edes välittänyt siitä, että tohtoriopinnot päättävä väitöstilaisuus oli jäänyt järjestämättä pakatessani laukkuni ja muuttaessani läntisen Euroopan kulttuurin ja tieteen pääkaupungin, Lontoon, pohjoispuolella sijaitsevaan St. Albansin kliseiseen englantilaiseen pikkukaupunkiin.

Eksoplaneetat ja paradigman muutos

Bruce Campbellin ja Gamma Cephei A:n jälkeen, heti seuraavana vuonna 1989, David Lathamin johtama tutkimusryhmä raportoi uudesta mielenkiintoisesta kohteesta kiertämässä tähteä HD 114762. artikkelissaan tutkijat kuvasivat uutta pienimassaista kappaletta ruskeaksi kääpiöksi, koska sen noin 11 Jupiterin minimimassa tarkoitti, että kappale kykeni deuteriumin fuusioon ytimessään melko suurella todennäköisyydellä. Tämä tutkijoiden ”näkymättömäksi kumppaniksi” kutsuma kohde, HD 114762 b, havaittiin Gamma Cephei b:n tapaan Doppler spektroskopialla, joka paljasti sen 84 päivän kiertoajan tähtensä ympäri vastaansanomattomalla tavalla (2). Kyse oli merkittävästä löydöstä, vaikka olikin täysin mahdotonta sanoa oliko kohde planeetta vai pienimassainen kääpiötähti. Esimerkiksi ruskeita kääpiöitä, tai kandidaatteja sellaisiksi, tunnetttiin tuolloin vain kourallinen, joten minkä tahansa tyypillistä punaista kääpiötähteä pienemmän kappaleen havainto Aurinkokunnan ulkopuolella oli merkittävä. Vaikka kohde vuosikymmeniä myöhemmin paljastui Gaia -avaruusteleskoopin havaintojen myötä juuri punaiseksi kääpiötähdeksi (3), se herätti 1980-luvulla tähtitieteilijöiden keskuudessa toivoa siitä, että massaltaan planeetoiksi luokiteltavien kappaleiden vetovoimavaikutus olisi mahdollista havaita lähitulevaisuudessa.

Doppler-spektroskopiassa vaikeutena on saada mitattua Dopplerin ilmiöstä aiheutuva tähden näennäisen värin punertuminen tai sinertyminen, kun se liikkuu planeettakuntansa yhteisen massakeskipisteen ympäri. Tarvitaan joitakin tähden valossa tietyillä aalonpituuksilla olevia kiintopisteitä, jotta voimme verrata niiden siirtymää suhteessa laboratoriossa havaittuun spektriin. Kaikeksi onneksi sopivia kiintopisteitä on runsaasti. Tähtien uloimman kaasukehän alkuaineet suodattavat pois ne aallonpituudet, joilla atomit virittyvät korkeampiin energiatiloihin. Silloin näyttää siltä, kuin säteilyspektri olisi tummien viivojen täyttämä. Nämä tummat viivat ovat siis vain aallonpituuksia, joilla havaintolaitteisiimme saapuu vähemmän valoa, joten riittää, kun tarkastellaan viivojen paikan siirtymistä kohti spektrin punaista tai sinistä päätä. Sittenkin tehtävä on hankala — spektriviivojen paikka siirtyy vain joitakin viivan leveyden tuhannesosia, joka on vähemmän kuin havaintolaitteen pikselin koko, joten on havaittava samanaikaisesti satoja viivoja ja laskettava niiden keskimääräistä siirtymää, jolloin saavutetaan havaintoon vaadittava tarkkuus. Oleellista on käytettävän spektrografin erotuskyky, eli se, kuinka monta digitaalikameran pikseliä rekisteröi yksittäisen spektriviivan muodon ja paikan.

Lickin observatorion 3.0 metrin Shane -teleskooppiin asennettiinkin sopiva spektrografi vuonna 1987, kun Butler ja Marcy aloittivat vuosikymmenten mittaisen eksoplaneettojen havaintoprojektinsa. He vertasivat spektriviivojen paikkoja laboratoriossa havaittuihin referenssiviivoihin, jotka tuotettiin jodikaasulla täytetyn suodattimen avulla. Jodi on tarkoitukseen mainio aine esiintyessään molekyylimuodossaan harvana kaasuna. Sen spektrissä on 500 ja 700 nanometrin aallonpituuksien välillä kymmeniätuhansia teräviä spektriviivoja, jotka tarjoavat mainion luonnollisen mitta-asteikon tähtien valon Doppler siirtymän mittaamiseen tarkasti. Jodin ansiosta tutkijat saavuttivat 1990-luvulle tultaessa kyvyn mitata tähtien nopeuden muutoksia hämmästyttävällä 3 m/s tarkkuudella, minkä tiedettiin riittävän eksoplaneettojen vaikutuksen havaitsemiseen. Esimerkiksi Jupiterin vetovoima saa Auringon liikkeen heilahtelemaan amplitudilla 13 m/s, joten Butler ja Marcy tiesivät kykenevänsä havaitsemaan jupiterinkaltaisia kaasujättiläisiä. Enää piti vain odottaa — planeetan rataparametrit voidaan määreittä luotettavasti vasta, kun tähden liikettä on havaittu ainakin yhden ratakierroksen verran. Jupiterin tapauksessa tarvitaan havaintoja yli kymmenen vuoden ajalta.


Englannissa eteeni avautui uusi maailma. Akatemia näyttäytyi edelleen vieraana paikkana mutta avokonttorit, joissa kourallinen vastaväitelleitä tutkijoita näppäili omassa loosissaan omiaan päivästä ja viikosta toiseen tuntui lähinnä huonolta vitsiltä. Olosuhteista huolimatta kirjoitin kolmen vuoden aikana viitisentoista artikkelia erilaisista eksoplaneettoihin liittyvistä aiheista, niiden havaitsemisesta, havaintojen käsittelystä, ja uusista löydöistä. Heti ensi kuukausina julkaisin erään artikkelin, joka herätti merkittävää kansainvälistä huomiota (4). Omanlaisensa episodi käynnistyi, kun Paul Butlerin pitkäaikainen kollega, Shane -teleskoopin spektrografin suunnittelija ja kokenut tutkija Steven Vogt julkaisi vuoden 2010 lopussa artikkelin uudesta merkittävästä planeettalöydöstä tähden Gliese 581 kiertoradalla. Planeettojen määrän laskeminen tähden kiertoradalla ei kuitenkaan ole alkuunkaan yksinkertaista, joten halusin varmistaa tulosten olevan oikein. Vogt tutkimusryhmineen oli väittänyt planeetan GJ 581 g olevan pieni kiviplaneetta tähden elinkelpoisella vyöhykkeellä, joten heidän julkaisunsa sai luonnollisesti runsaasti huomiota kautta globaalin mediakentän. Heitin omassa julkaisussani vuoden 2011 alussa planeetan kuvainnollisen jättiläisrekan alle ja kerroin sen olevan puutteellisten havaintojen mallinnuksen aiheuttama artefakti ja siten virhetulkinta.

Sainkin pian sähköpostia Vogtilta, joka oli kiusaantunut tuloksistani mutta vaikuttunut käyttämistäni data-analyysin menetelmistä. Aloitimme yhteistyön jo samana vuonna ja sain runsaasti uusia kontakteja eksoplaneettojen etsijöihin Yhdysvalloista Australiaan ja Chilestä Saksaan. Parasta oli kuitenkin se, että sain pääsyn koko Lick-Carnegie eksoplaneettaprojektin havaintomateriaaliin. Laskentamenetelmien osaaminen kohtasi havaitsemisen asiantuntijuuden. Saatoin vain ilmaista kiinnostukseni joihinkin tiettyihin lähitähtiin, ja hetkessä käsissäni olivat likimain kaikki niistä tehdyt havainnot viimeisen parinkymmenen vuoden ajalta. Näin ensi kertaa useiden planeettojen olemassaolon mutta samalla turhauduin tieteellisen vertaisarvioinnin ongelmien ja rahoitusvaikeuksien suossa. Eksoplaneettatutkimus oli valtavassa nosteessa, ja ala oli yksi kovimpia tutkijoiden välisen kilpailun areenoita. Rahoituksen saaminen oli kiven alla. Kukapa ei haluaisi löytää uusia maailmoja.


Kuultuaan Michel Mayorin ja Didier Quelozin tekemästä havainnosta, planeetasta 51 Pegasi b, jolla herrat ansaitsivat Nobelin palkinnon vuosia myöhemmin, Paul Butler ryhtyi ottamaan välittömästi yhteyttä kollegoihinsa. Hän tarvitsi kaiken laskentakapasiteetin, jokaisen mahdollisen tietokoneen, joka oli saatavilla. Auringonkaltainen lähitähti 51 Pegasi oli ollut myös Lickin observatorion havaintoluettelossa jo vuodesta 1987 ja sen spektrejä oli vuosien saatossa kertynyt jo kymmeniä. Niitä ei vain oltu vielä prosessoitu, koska juuri kukaan ei ollut osannut odottaa, että kuumia Jupitereita voisi olla olemassa. Prosessointi, ja tähden liikkeen laskeminen, taas vaati runsaasti laskennallisia resursseja, joten jokainen tietokone, jonka Butler saisi valjastettua prosessointiin olisi avuksi. Tutkijoiden ajatuksena oli ollut, että havaintoprojektin tarkkuus riitti havaitsemaan jupiterinkaltaisia planeettoja toisten tähtien kiertoradoilla mutta havaintojen prosessoinnilla ei ollut kiire, koska tarvittiin yli kymmenen vuoden havaintojakso, jotta mitään voitaisiin nähdä. Tai niin tutkijat ainakin ajattelivat, koska arvelivat Jupiterin olevan malliesimerkki muita tähtiä kiertävistä havaittavissa olevista planeetoista. Otto Struven spekulaatiot vuosikymmenten takaa olivat unohtuneet tyystin.

Kuva 2. Taiteilijan näkemys eksoplaneetasta 51 Pegasi b. Kuva: ESO/M. Kornmesser/Nick Risinger.

Paul Butlerin tapauksessa ennakko-oletukset kaasuplaneettojen sijainnista kaukana tähdistään maksoivat luultavasti laajaa huomiota saaneen ensimmäisen varmennetun eksoplaneettalöydön auringonkaltaisen tähden kiertolaisena. Hän ei kuitenkaan omien sanojensa mukaan kokenut pettyneensä kovinkaan voimakkaasti. Lick-Carnegien eksoplaneettaprojekti nimittäin kantoi runsain mitoin hedelmää Butlerin ryhmineen varmennettua nopeassa tahdissa 15 Pegasi b:n havainnon ja raportoitua kourallisen muitakin jättiläisplaneettoja. Nykypäivään mennessä havaintoja on kertynyt jo useita satoja, ja niiden ansiosta eksoplaneettojen aikakausi polkaistiin toden teolla käyntiin 1990-luvun loppupuoliskolla. Nyt havaitsemme jo rutiininomaisesti jupiterinkaltaisia planeettoja lähitähtien kiertolaisina, aivan kuten Butler ja Marcy alkujaan suunnittelivatkin. Luonto vain näytti, että sen tutkiminen tuottaa aina tuloksia, joita on hankalaa tai jopa mahdotonta ennustaa.

Uusi aika

Se hetki, kun onnistuu identifioimaan eksoplaneetan signaalin kohinaisista havainnoista on merkittävä. Kun tilastollinen varmuus signaalista ylittää valitut raja-arvot, ja kun vaihtoehtoiset selitykset onnistutaan eliminoimaan, voidaan ryhtyä tarkastelemaan minkälaista planeettaa signaali vastaa. Voimme laskea planeetan radan ominaisuuksia, sen etäisyyden tähdestään ja kiertoajan, sekä määrittää — riippuen käytetystä havaintomenetelmästä — sen säteen tai massan kaltaisia fysikaalisia parametreja. Tunnemme sen kiertämän tähden ominaisuudet, joten voimme arvioida planeetan radallaan pinnalleen saamaa säteilyvuota ja määrittää sen efektiivisen lämpötilan arvioidaksemme onko sen pinnalla edellytyksiä nestemäisen veden esiintymiselle. Jos tunnemme säteen ja massan, voimme arvioida planeetan koostumusta käyttäen erilaisia fysikaalisia koostumusmalleja. Jos transmissiospektroskooppista dataa on saatavilla, voimme arvioida planeetan kaasukehän ominaisuuksia ja siten fysikaalis-kemiallisia olosuhteita sen pinnalla. Voimme arvioida onko planeetan elinkelpoisuus mahdollista ja voisiko sen olosuhteissa esiintyä eläviä organismeja. Ja kaikki tämä tieto voidaan saada havaitsematta itse planeetasta mitään muuta kuin vain sen epäsuoria vaikutuksia tähdestä havaintolaitteisiimme saapuvaan valoon.

Olemme tavallaan kulkeneet pitkän tien ensimmäisistä planeettalöydöistä muttemme sittenkään ole vielä edenneet kauaksi. Doppler spektroskopia on edelleen tärkeä havaintomenetelmä, joskin ylikulkujen havaitsemiseen soveltuvat avaruusteleskoopit ovat tuottaneet vieläkin enemmän mielenkiintoisia löytöjä. Tarkkailemme kuitenkin edelleen epäsuorasti tähtien liikettä ja käytämme Keplerin satoja vuosia vanhoja liikelakeja saadaksemme selville planeettojen ratojen ominaisuuksia. Olemme nähneet merkkejä lähes kaikkia lähitähtiä kiertävistä planeetoista mutta ne ovat edelleenkin valtaosaltaan vain tähtien havainnoista esiin kaivettua marginaalisen pientä heilahtelua, jonka tulkintana planeetta on mainio selitysmalli. Silti, siihen pienenpieneen heilahteluun pohjautuu jodenkin kiinnostavien lähitähtien tapauksessa jopa satojen tutkimusartikkelien kirjallisuus.


Olen ollut tieteen eturintamassa yli vuosikymmenen. Olen seissyt historian jättiläisten harteilla nähdäkseni aina silloin tällöin hiukan kauemmaksi kuin kukaan muu ennen minua. Olen samaan aikaan kiitollinen saamistani mahdollisuuksista ja pettynyt siihen, miten tiedepolitiikka on rikki. Tieni tieteen eturintamaan ei ole ollut vain mutkikas, vaan se on ollut myös täynnä ylitsepääsemättömiä esteitä, joita resursseista päättävät poliitikot ovat halunneet asettaa hidastamaan nuorten tutkijoiden kapuamista jättiläisten harteille. Minun kokemukseni tietenkin kuvastaa vain yksittäistä tapahtumasarjaa ja anekdoottia, mutta siinäkin näkyvät yhteiskunnalliset rakenteet, joista oleellisin on tapamme rahoittaa tiedettä ja sen tekemistä.

Samalla, kun olen ollut valtavan onnekas pysyttyäni tieteen eturintamassa jo puolitoista vuosikymmentä, tiedostan myös, että en ole vakiinnuttanut asemaani tutkijana siksi, että olisin poikkeuksellisen pätevä, ylivertaisen älykäs tai erinomaisen syvällisesti oppinut. Sellaisilla ominaisuuksilla on vain vähän tekemistä akateemisen uran rakentamisen kanssa. Yksi tärkeimpiä ominaisuuksia on sinnikkyys. Tutkija tai tutkijaksi haluava ei saa lannistua jatkuvista hylkäyksistä ja arvioinneista, köyhyydestä tai sen uhasta, taloudellisesta epävarmuudesta tai edes siitä, että seuraava leipä saattaa löytyä kaukaisesta maasta toiselta mantereelta. Sitäkin tärkeämpää on kuitenkin puhdas tuuri. On saatava tasaisella vauhdilla positiivisia rahoituspäätöksiä akateemisen maailman jatkuvista lottoarvonnoista, joissa päätetään kuka saa tutkimukseensa resursseja ja kuka ei. On onnistuttava tuntemaan läheisesti juuri niitä kokeneempia kollegoita, jotka onnistuvat samoissa arvonnoissa parhaiten. Ja on onnistuttava saamaan merkittäviä positiivisia tutkimustuloksia, joiden hehkuttamiseen voi perustaa seuraavat arvontakuponkinsa, joita rahoitushakemuksiksikin kutsutaan. Tieteen perustusten vahvistaminen ja aiempien tulosten huolellinen varmentaminen ja varmistaminen ei kelpaa riittäväksi meriitiksi huippujulkaisuihin ja siihen ajan haaskaaminen heikentää siksi tulevaisuuden rahoitusmahdollisuuksia merkittävästi. Koko tiedemaailma on rikki.

Tutkijana onnistuminen on alttiina akateemisen maailman puuskittaisille myötä- ja vastatuulille, jotka aiheutuvat viimekädessä vain lyhyttä aikaperspektiiviä hahmottavien poliitikkojen poukkoilevasta resurssien sormeilusta. Toisinaan halutaan päättää poliittisin perustein mikä tiede on tekemisen arvoista, mitä kutsutaan innovaatioita tuottavaksi tutkimuksen keihäänkärjeksi ja resursoidaan avokätisesti, ja mitä heitetään jatkuvasti katuojaan toistuvin stoalaisen tyyneyden sävyttämin resurssileikkauksin ja kasvavin tuotantovaatimuksin. Toisinaan taas halutaan yksioikoisesti syöstä koko akateeminen kenttä kurimukseen viemällä resursseja pois ja vetoamalla sitten yliopistojen autonomiaan siinä, mistä tieteenaloista haluavat karsia. Omille lempialoille toki saatetaan syytää resursseja ja sitten toisella kädellä leikataan hallinnosta ikiaikaisen julkisen sektorin tehostamisen nimissä, pakottaen jopa kovapalkkaiset professorit tekemään sihteerien töitä. On sanomattakin selvää, että tieteentekijöiden parhaimmiston pakottaminen pyörittämään papereita heikentää tieteenteon mahdollisuuksia mutta se on tietenkin tarkoituskin — poliitikot kyllä ymmärtävät mainiosti toimiensa seuraukset.

Voin katsoa taaksepäin ja todeta, että olen kuin ihmeen kaupalla onnistunut väistämään pahimmat karikot ja pitämään pääni pinnalla akateemisen maailman syvissä vesissä. Ainakin toistaiseksi. Mikään ei kuitenkaan takaa, että onneni jatkuisi tulevaisuudessa. Eksoplaneettatutkimus on kuitenkin etenemässä jopa Suomessa. Kevään satoa on yksi uusi maisterin tutkinto eksoplaneettatutkimuksesta ja tuloillaan on luultavasti toinenkin vielä tämän vuoden kuluessa. Seuraava tutkijasukupolvi oppii näkemään näkymättömän ja heidän silmänsä ovat entistäkin tarkemmat. Rahoituksen saaminen taas on edelleenkin likimain mahdotonta, mistä on osoituksena Suomen Akatemialle kirjoittamani hakemuksen täysi pistepotti arvioinnista ja sen jääminen vaille rahoitusta kaikesta huolimatta.

Tiedonjano saa kuitenkin jatkamaan. Haluan edelleenkin tehdä tutkimusta ja olen siinä aivan yhtä innokas kuin luettuani eksoplaneetoista, uusista maailmoista, ensimmäistä kertaa. Raha taas ei minua kiinnosta, se aiheuttaa lähinnä vain harmia mutta yhteiskunnassamme toimimiseen vaaditaan rahallisia resursseja, koska tiedettä ei edelleenkään tehdä pelkällä pyhällä hengellä ja sisäinen motivaatio ei taltuta nälkää tai kata laskuja. Valitettavasti tieteen arvostus poliittisella kentällä näkyy rahallisina resursseina huomattavasti heikommin kuin tyhjänpäiväisissä juhlapuheissa.


Kirjoitus on julkaistu ensimmäisenä Tähtitieteellinen yhdistys Ursan blogissa Eksoplaneetta hukassa.

Lisää aiheesta

Lähteet

  1. Campbell et al. 1988, A Search for Substellar Companions to Solar-type Stars. The Astrophysical Journal, 331, 902.
  2. Latham et al. 1989. The unseen companion of HD 114762: a probable brown dwarf. Nature, 339, 38.
  3. Kiefer 2019. Determining the mass of the planetary candidate HD 114762 b using Gaia. Astronomy and Astrophysics, 632, L9.
  4. Tuomi 2011. Bayesian re-analysis of the radial velocities of Gliese 581. Evidence in favour of only four planetary companions. Astronomy and Astrophysics, 528, L5.

Jättiläisten harteilla

Kertomukset on hyvä aloittaa alusta. Aivan alusta.

Luin vuonna 1996 artikkelin juuri löydetyistä uusista planeetoista. Siinä kerrottiin yksityiskohtaisesti, miten sveitsiläiset ja yhdysvaltalaiset tutkijat olivat kyenneet tekemään vuosikymmenten haaveesta totta. He olivat havainneet luotettavia merkkejä planeetoista kiertämässä toisia aurinkoja, galaktisen lähinaapuruston muita auringonkaltaisia tähtiä.

Ensimmäiset havainnot eksoplaneetoista edustivat tieteellistä vallankumousta. Ne merkitsivät samankaltaista paradigman muutosta kuin kopernikaaninen vallankumous, jossa koko kosmologinen näkökulma muuttui ja todettiin Maan olevan vain yksi planeetta muiden joukossa Aurinkoa kiertävällä radalla. Tai se Alfred Russell Wallacen ja Charles Darwinin työhön perustuva havainto, että ihminen on vain yksi evoluutiohistorian saatossa kehittyneistä miljoonista Maapallon lajeista.

Maa ei ole erityisasemassa muutoin kuin siitä subjektiivisesta näkökulmasta, että se on kehtomme ja kotimme. Aurinkokunta on vain yksi monista planeettakunnista galaksissamme, joka on puolestaan vain yksi monista näkyvän maailmankaikkeuden tähtijärjestelmistä. Emme ole millään periaatteellisella tavalla erityisasemassa maailmankaikkeudessamme, galaksissamme tai aurinkokunnassamme. Se oli ensimmäisten eksoplaneettahavaintojen oleellinen tulos — bonuksena löydettiin uusia mielenkiintoisia kohteita, joiden havainnointi on opettanut runsaasti uutta maailmankaikkeuden toiminnasta, monimuotoisuudesta, historiasta ja kehityksestä, sekä omasta paikastamme siinä.

Kiinnostukseni heräsi. Alitajuisesti aavistin, että halusin astua jonakin päivänä näiden suurten tähtitieteilijöiden, ”planeettojen metsästäjien”, valtaviin saappaisiin. Halusin olla löytämässä uusia maailmoja, elää modernin ajan löytöretkeilijänä jossakin jännittävän tieteiskirjallisuuden ja huipputieteen rajapinnalla. Halusin kiivetä aina vain ylemmäs, sinne, mistä näkee kauemmaksi.

En koskaan kehdannut mainita alitajuista aavistustani edes itselleni. Miten yksi keskinkertaisesti koulussa menestyvä pohjoisen periferian lapsi voisi saavuttaa mitään suurta tai tehdä mitään jännittävää? En osannut haaveilla. En osannut asettaa itselleni tavoitteita. Niinpä päädyin vain kulkemaan sinne, minne mielenkiinto johdatti, yksi kirja ja artikkeli kerrallaan. Kiipesin historian suurten tutkijoiden tukeville hartioille, kohti tunnetun tieteen ja tuntemattoman rajaseutua. Kurkistin lopulta sinne, minne kukaan ei ollut vielä nähnyt.


Ajatus planeetoista kiertämässä lähitähtiä ei ole uusi. Taivaan tähtien katsottiin voivan olla toisia aurinkoja jo 1500-luvulla kopernikaanisen vallankumouksen mukanaan tuoman paradigman muutoksen pyörteissä. Jos Maa on vain yksi planeetoista kiertämässä Aurinkoa, miksei tähtitaivaan muidenkin aurinkojen kiertoradoilla olisi planeettoja? Niiden havainnointi ajateltiin kuitenkin mahdottomaksi. Verrattaen himmeän, pikkuruisen planeetan havaitseminen kirkkaasti loistavan, valtaisan tähden vieresssä vaikutti teknisesti saavuttamattomalta — kuin koetettaisiin nähdä pienen kiiltomadon valonkajetta järven vastarannalla sijaitsevan, aivan ilmiliekeissä palavan talon vieressä.

Planeetat kuitenkin paljastavat olemassaolonsa monella tapaa. Tähtitieteilijöillä oli käytössään muuttumattomat fysiikan lait ja alati paraneva teknologia. He keksivät useita menetelmiä eksoplaneettojen havainnoimiseksi.

Barnardin tähden valssi

Isaac Newtonin jo 1600-luvulla muotoilema teoria gravitaatiovoiman vaikutuksesta tarjoaa tavan havaita planeettoja näkemättä niiden loistetta valokuvissa. Tarvitsee vain tarkkailla tähtien liikettä taivaalla, ja etsiä niistä jaksollisia poikkeamia perustuen siihen, että tähdet kiertävät avaruudessa liikkuessaan itsensä ja jonkin toisen kappaleen yhteisen massakeskipisteen ympäri. Jos kumppanina on planeetta, tähti ei heilahtele paljon mutta sen liikkeessä voi silti havaita kumppanin vetovoiman aiheuttamia vaikutuksia. Aivan kuin tähdet tanssisivat valssia kosmisen musiikin säestämänä, näkymättömän partnerin ohjatessa niiden liikettä.

Peter van de Kamp tiesi, että planeetan aiheuttaman heilahtelun voisi havaita helpoiten, jos kohteena oli mahdollisimman lähellä Aurinkoa sijaitseva lähitähti. Kohteeksi oli helppoa valita yksi lähinaapureista, vuonna 1916 löydetty pieni punainen kääpiötähti, Barnardin tähti — lähempänä sijaitsee vain alpha Kentaurin kolmoistähti. Heilahtelun suuruudesta voisi laskea planeetan massan — heilahtelun jakso taas vastaisi suoraan planeetan vuoden pituutta. Oli vain havaittava tarkasti tähden liikkeen poikkeamia sen luotisuorasta ominaisliikkeestä, joka Barnardin tähdellä on tunnetuista tähdistä kaikkein suurinta.

Vuosikymmeniä kestäneen havaintokampanjan päätteeksi van de Kamp teki 1960-luvulla havainnon planeetasta — tai niin hän ainakin havaintonsa tulkitsi. Havaintojen variaatiot oli mallinnettavissa yhden (1,2) tai kahden (3) planeetan aiheuttamina mutta ongelmana olivat vaikeudet saavuttaa riittävä tarkkuus. Tarkkuutta koetettiin parantaa ottamalla joka vuosi sadan valokuvauslevyn tulosten keskiarvo sekä laittamalla usea kollega ja opiskelija mittaamaan tähden paikka suhteessa taustataivaan kohteisiin jokaiselta levyltä inhimillisen virheen minimoimiseksi. Sekään vain ei riittänyt. Kävi ilmi, että useat tähdet näyttivät liikkuvan van de Kampin valokuvissa samalla tavalla. Kyse ei siis voinut olla planeetoista, vaan kiusallisista teleskoopin ja muun laitteiston muutoksista, joita ei oltu otettu huomioon.

Barnardin tähden tanssia valokuvauslevyillä ei aiheuttanut planeetta tai kaksi tähden kiertoradalla huolimatta van de Kampin tulkinnasta (Kuva 1.). Barnardin tähti ei kuitenkaan ole yksin. Sen kiertolaiset vain eivät ole rittävän massiivisia, jotta van de Kamp olisi voinut havaita niistä merkkejä.

Peter van de Kamp etsi planeetan aiheuttamaa signaalia, näki signaalin, ja päätteli sen olevan todiste planeetan olemassaolosta. Kyseessä oli tavanomainen virhetulkinta, jollaisille kaikki tutkijat ovat aina alttiita, elleivät ole varovaisia. Vahvistusharha hoitaa lopun.

1980-luvulla moni oli kuitenkin ryhtynyt aavistelemaan, että ehkäpä eksoplaneettojen havainnointi ei olisikaan täysin mahdoton saavutus. Se saattaisi olla jopa seuraavan sukupolven tähtitieteilijöiden toteutettavissa. Van de Kampin virhe Barnardin tähden kanssa kuitenkin kasvatti tutkijoiden kynnystä ryhtyä epätodennäköiseen eksoplaneettojen etsintään. Juuri kukaan ei halunnut ottaa pienintäkään riskiä siitä, että tulisi muistetuksi vain tekemästään virheestä.

Planeettalöytöjen pioneerit

Vuonna 1988 yhdysvaltalainen Bruce Campbellin johtama tutkimusryhmä julkaisi tuloksensa, joiden mukaan eräs lähitähti, gamma Cephei A, liikkui avaruudessa aavistuksen heilahdellen (4). He olivat mitanneet tähden lähettämän valon sini- ja punasiirtymiä, keräten informaatiota nopeuden muutoksista meitä kohti ja meistä poispäin. Kyseistä Doppler spektroskopiaksi kutsuttua menetelmää oli käytetty ansiokkaasti kaksoistähtien ratojen määrittämiseen. Menetelmä oli nerokas, koska sen soveltamiseen tarvittiin vain riittävän kirkas tähti, josta oli tehtävä spektrimittauksia. Planeettojen etsintä tuli mahdolliseksi muutaman lähitähden sijaan tuhansien riittävän kirkkaiden tähtien ympäriltä.

Doppler spektroskopiassa mitataan tarkalleen ottaen tähden säteilyspektrin absorptioviivojen (Kuva 3.) paikkojen muutosta. Jos ne heiluvat syklisesti punaiseen ja siniseen päin, on tavallisesti kyse näkösäteen suunnassa heilahtelevan tähden valon Doppler-siirtymästä. Se taas aiheutuu tähden tanssista planeetan vetovoiman vaikutuksesta. Voidaan sanoa, että menetelmällä havaitaan planeettoja tarkkailemalla pienenpieniä tähden värin muutoksia.

Kuva 3. Esimerkki siitä, miltä spektrografien kuvaamat spektrit näyttivät 1990-luvulla. Mustat pystyviivat ovat tähden absorptioviivoja, joiden kohdalla tähden uloimman kaasukehän ionisoituneet atomit estävät valon kulkua. Värikoodit kuvaavat näkyvän valon eri värejä. Kuva: R. P. Butler, Carnegie.

Gamma Cephein kaksoistähden A-komponentti käyttäytyi kuin sitä kiertäisi planeetta. Tutkijat olivat kuitenkin julkaisussaan varovaisia ja totesivat vain saaneensa ”luotettavaa todistusaineistoa pienimassaisesta kappaleesta”. Pienimassainen tarkoitti massaltaan vajaan kahden Jupiterin kokoista kiertolaista vajaan kolmen vuoden kiertoradalla. Campbell ryhmineen oli varovainen ja tiedosti virhehavainnon mahdollisuuden olevan valtava. Kollegoiden paineen vuoksi ryhmä vältti sanomasta suoraan, että gamma Cephei A:ta kiersi planeetta ja Campbell itse vaihtoi alaa ryhtyen verokonsultiksi — hän ilmeisesti kyllästyi ainaisiin vaikeuksiin saada työpaikkaa tai edes rahoitusta akateemisessa maailmasta.

Vuonna 2002 Campbellin löytö varmistui. Tähteä gamma Cephei A tosiaan kiertää jättiläisplaneetta (5). Campbell vain ei saanut kunniaa ensimmäisen eksoplaneetan löytäjänä, koska hänen kollegansa eivät uskoneet tulokseen. Luultavasti myös van de Kampin virhetulkintojen eksoplaneettojen etsinnän ylle langettama varjo esti häntä tuomasta löytöään esille sen ansaitsemalla tarmokkuudella.


Samoihin aikoihin toinenkin yhdysvaltalaisryhmä työskenteli oman spektrografinsa parissa, havaiten omia kohteitaan.

David Lathamin johtama joukko tähtitieteilijöitä ei ollut epävarma julkistaessaan löytönsä. He kertoivat havainneensa luettelokoodilla HD 114762 tunnettua tähteä kiertävän kappaleen, jonka olemassaolon paljasti vain sen vetovoima (6). Tähti heilui selvästi mutta näkymätön kappale oli sekin moninkertaisesti Jupiteria massiivisempi. Sen minimimassaksi saatiin arvioitua peräti 11 Jupiterin massaa, mikä sai tutkijat pohtimaan tosissaan miten he voisivat kuvailla kohteen luonnetta. HD 114762 b osoittautui niin massiiviseksi, että se saattoi kyetä fuusioimaan vedyn raskaampaa isotooppia deuteriumia heliumiksi ytimessään. Sellainen kappale olisi ruskeaksi kääpiöksi luokiteltava tähtien ja planeettojen välimuoto, ei planeetta.

Julkaisemassaan artikkelissa Lathamin tutkijaryhmä joutui hyväksymään tosiasiat. He olivat tosiaan löytäneet erittäin mielenkiintoisen tähtiin verrattuna pienimassaisen kappaleen mutta sen luokittelulle planeetaksi ei ollut tarpeeksi vahvoja perusteita. Ryhmä totesi, että ”kyseessä on todennäköisesti ruskea kääpiö tai jopa jättiläisplaneetta”, painottaen kohteen luokittelun planeetaksi olevan perusteetonta. Siksi sitä ei myöskään pidetty ensimmäisenä eksoplaneettalöytönä.

On puhdasta kohtalon ivaa, että nykyisellään HD 114762 b luokitellaan eksoplaneetaksi likimain jokaisessa eksoplaneettojen luettelossa.

Eksoplaneettojen aika

Uudet tieteenalat voivat alkaa hyvinkin nopeasti. Yksittäinen löytö voi paljastaa uuden eksoottisten tutkimuskohteiden luokan, jonka ympärille muotoutuu oma tutkimussuuntauksensa vuosien saaatossa.

Eksoplaneettojen suhteen niin kävi parissa viikossa. Ensin ei tunnettu — Campbellin, Lathamin ja kumppaneiden tuloksista huolimatta — ainuttakaan auringonkaltaista tähteä kiertävää eksoplaneettaa. Seuraavassa hetkessä niitä tunnettiin jo kourallinen ja kokonainen tutkijoiden armeija käänsi katseensa eksoplaneettojen metsästykseen.

Mutta sitä ennen, vuonna 1992 Aleksander Wolszczan ja Dale Frail raportoivat ensimmäisestä luotettavasta eksoplaneettalöydöstä. Löytö oli täysin odottamaton, fantastisen kummallinen planeettakunta kuolleen tähden jäänteen, neutronitähden PSR1257+12 ympärillä. Planeetat ovat ilmeisesti muodostuneet valtaisan supernovaräjähdyksen jäljiltä kiertoradalle jääneestä materiasta. Yksikään tähtitieteilijä ei ollut tullut ajatelleeksi, että vinhasti pyörivän, säteilyllään lähiympäristönsä steriloivan tähden jäänteen kiertoradoilla voisi olla planeettoja. Joskus maailmankaikkeus vain on erikoisempi kuin kukaan on edes osannut kuvitella.


Ensimmäinen auringonkaltaista tähteä kiertävä planeetta löytyi vuonna 1995 (7). Tähden 51 Pegasi kiertoradalta havaittiin kuuma jättiläisplaneetta 51 Pegasi b, joka myöhemmin sai nimen Dimidium. Löydön tehneet sveitsiläisastronomit Michel Mayor ja Didier Queloz palkittiin vuoden 2019 fysiikan Nobelin palkinnolla. Kun yhdysvaltalaiset Paul Butler ja Geoffrey Marcy julkaisivat omat tuloksensa vain kahta viikkoa myöhemmin, he eivät vain varmistaneet 51 Pegasi b:n olemassaoloa, vaan raportoivat samalla kahdesta muustakin eksoplaneetasta.

Kuva 4. taiteilijan näkemys kuumasta jättiläisplaneetasta, kuten 51 Pegasi b, kiertämässä aktiivista, auringonkaltaista tähteä. Kuva: NASA/JPL-Caltech.

Butler ja Marcy eivät olleet ajatelleet, että jättiläismäiset kaasuplaneetat voisivat kiertää tähtiään lähellä, niiden pintaa viistäen. Siksi he eivät olleet osanneet etsiä Merkuriusta nopeammin tähtensä kiertäviä planeettoja, vaan vasta hioivat menetelmiään ja tekivät havaintoja koettaessaan nähdä jupiterinkaltaisia planeettoja lähitähtien kiertolaisina. He riensivät analysoimaan mittauksiaan välittömästi kuultuaan Mayorin ja Quelozin löydöstä ja onnistuivat varmistamaan sen ennätysnopeasti. Samalla he muuttivat eksoplaneettojen etsinnän muutaman optimistisen tutkijan haihattelusta varteenotettavaksi tähtitieteen haaraksi, koska yhden yksittäisen löydön voi aina kyseenalaistaa hatarinkin perustein mutta kolmen havaintovirheen esittäminen ei ole mahdollista edes ankarimmalle epäilijälle.

Eksoplaneettojen aika oli alkanut.

Tunnemme tuhansia planeettoja lähitähtien kiertolaisina. Mutta eksoplaneettojen aika ei ole tulossa päätökseen, siinä vain alkaa uusi vaihe. Tavoitteena ei ole enää vain planeettalöytöjen tekeminen, vaan niiden ominaisuuksien ja pintojen olosuhteiden määrittäminen. Eksoplaneettatutkimus on modernia löytöretkeilyä, jossa emme löydä ja tutki vain uusia maita, vaan kokonaisia uusia maailmoja.


Minulla on ollut kunnia olla mukana etsimässä ja löytämässä kymmeniä eksoplaneettoja. Se on ollut mahdollista vain, koska sinnikkäämmät tutkijat ovat periksiantamattomasti kehittäneet havaintomenetelmiä, keränneet havaintoja ja etsineet eksoplaneettoja vuosien ja vuosikymmenten ajan.

Olen löytänyt uusia maailmoja. Mutta vaikka olen hetken verran, pienen vilauksen ajan nähnyt kauemmaksi, se on ollut mahdollista vain, koska olen seissyt jättiläisten harteilla.


Kirjoitus on julkaistu ensimmäisenä Tähtitieteellinen yhdistys Ursan blogissa Eksoplaneetta hukassa.

Lähteet

  1. van de Kamp 1963. Astrometric study of Barnard’s star from plates taken with the 24-inch Sproup refractor. The Astronomical Journal, 68, 515.
  2. van de Kamp 1969. Parallax, proper motion, acceleration and orbital motion of Barnard’s star. The Astronomical Journal, 74, 238.
  3. van de Kamp 1969. Alternate dynamical analysis of Barnard’s star. The Astronomical Journal, 74, 757.
  4. Campbell et al. 1988. A search for substellar companions to Solar-type stars. The Astrophysical Journal, 331, 902.
  5. Hatzes et al. 2003. A planetary companion to gamma Cephei A. The Astrophysical Journal, 599, 1383.
  6. Latham et al. 1989. The unseen companion of HD 114762: a probable brown dwarf. Nature, 339, 38.
  7. Mayor et al. 1995. Jupiter-mass companion to a solar-type star. Nature, 378, 355.

Valaan tähdistön Aurinko

Toisin kuin usein luullaan, tähtitieteilijät eivät tavallisesti tiedä yhtään mitään tähtikuvioista. He eivät tarkkaile kaukoputkillaan planeettojen liikkeitä tehden samalla ennusteita käyttäen apunaan muinaisia tähtikarttoja, joissa eri tähdistöjen kohdalle on piirretty koristeellisia kuvia horoskooppimerkeistä. Se on astrologiaa, ei tiedettä.

Tähdistöjen nimet kuitenkin elävät tähtitieteessä, koska niiden mukaan on nimetty runsaasti kirkkaimpia tähtiä. Esimerkiksi, ensimmäinen tunnettu auringonkaltaista tähteä kiertävä eksoplaneetta löydettiin 51 Pegasin järjestelmästä. Kyseessä on siis pegasoksen tähdistön viideskymmenesensimmäinen tähti. Aivan samoin 47 Ursae Majoris tarkoittaa ison karhun neljättäkymmenettäseitsemättä tähteä.

Tau Ceti

Auringonkaltaiset yksinäiset, keltaiset G-spektriluokan kääpiötähdet ovat harvassa. Niitä on vain pari prosenttia kaikista tähdistä. On epätodennäköinen sattumus, että lähin lähes auringonkaltainen tähti löytyy vain noin 12 valovuoden etäisyydeltä. Kyseessä on tähti nimeltään Tau Ceti. Valaan tähdistön kirkas tähti, jota merkitään kreikkalaisten aakkosten tau-kirjaimella, on yksi suosikkitähtiäni.

Kuten Auringolla, myös Tau Cetillä on ympärillään planeettakunta. Sain siitä ensimmäisiä viitteitä vuonna 2012 (1).

Tau Ceti poikkeaa kuitenkin Auringosta yhdellä merkittävällä tavalla. Poikkeama ei liity siihen mitä on havaittu, vaan siihen mitä on jäänyt havaitsematta. Tähdestä vuosien saatossa tehdyistä radiaalinopeushavainnoista olisi nimittäin voinut helposti todeta Jupiterin ja Saturnuksen kaltaisten jättiläisplaneettojen olemassaolon. Sellaisista ei kuitenkaan havaittu jälkeäkään (1,2). Tau Cetillä ei ole jättiläisplaneettoja vaikuttamassa tähden liikkeeseen useiden vuosien aikaskaalassa, tanssittamassa tähteä taivaalla.

Tutkimusryhmäni saamien tulosten mukaan, Tau Cetiä kiertää neljän tai viiden planeetan järjestelmä (1,2). Tulosten tulkinta on kuitenkin osoittautunut erittäin vaikeaksi, koska planeetat ovat massoiltaan suhteellisen pieniä ja koska niiden aiheuttamien signaalien suodattaminen esiin kohinaisesta havaintoaineistosta on äärimmäisen haastava projekti. Vaikka planeettakunta poikkeaakin Aurinkokunnasta (Kuva 1.), se koostuu mitä todennäköisimmin supermaapalloiksi luokiteltavista kiviplaneetoista. Järjestelmä on hyvinkin vertailukelpoinen Aurinkokunnan sisäplaneettojen tarjoaman esimerkin kanssa.

Kuva 1. Tau Cetin (yllä) planeettakunnan ja Auringon sisäplaneettojen (alla) ratojen vertailu. Kuva: F. Feng, University of Hertfordshire.

Tau Cetiä ympäröi myös pölykiekko, joka levittäytyy suunnilleen samalta etäisyydeltä kuin Aurinkokunnan asteroidivyöhyke aina Kuiperin vyön ulkoreunalle viisikymmentä kertaa Maan ja Auringon etäisyyttä kauemmas (3). Aurinkoa luultavasti ympäröisi samanlainen pölykiekko, jos järjestelmässämme ei olisi kaasujättiläisiä.


Tieteiskirjallisuudessa Tau Ceti on esiintynyt lukemattomia kertoja. Meidän ei kuitenkaan tarvitse kuvitella eksoottista planeettakuntaa tähden ympärille, vaan voimme tarkastella oikeaa havaintoaineistoa, joka kertoo Tau Cetin olevan oman aurinkokuntansa keskus. Hyvin samankaltainen kuin meidän Aurinkommekin.

Lähteet

  1. Tuomi et al. 2013. Signals embedded in the radial velocity noise. Periodic variations in the tau Ceti velocities. Astronomy and Astrophysics, 551, A79.
  2. Feng et al. 2017. Color difference makes a difference: Four planet candidates around Tau Ceti. The Astronomical Journal, 154, 135.
  3. Lawler et al. 2014. The debris disc of solar analogue tau Ceti: Herschel observations and dynamical simulations of the proposed multiplanet system. Monthly Notices of the Royal Astronomical Society, 444, 2665.

Kun auringot tanssivat

Noin kolmannes Linnunradan tähtijärjestelmistä sisältää vähintäänkin kaksi toisiaan kiertävää tähteä. Auringonkaltaisista keltaisista G-spektriluokan kääpiötähdistä suunnilleen joka kolmas on yksin. Aurinko on siis vähemmistössä, vailla tähtikumppania, jonka kanssa tanssia ympäri yhteisen massakeskipisteen.

Pidämme Aurinkoa aivan tavallisena tähtenä. Mutta keltaisia kääpiötähtiä on vai joka kahdeskymmenesviides Linnunradan tähdistä. Täsmälleen yhtä kirkkaita tähtiä kuin Aurinko on vähemmän kuin yksi sadasta. Linnunradan tähdet ovat 70 prosenttisesti pienempiä ja keveämpiä punaisia kääpiötähtiä. Siksi onkin erikoista ajatella, että ensimmäiset vakavat yritykset havaita planeettoja kiertämässä Auringon lähinaapuruston tähtiä tehtiin suuntaamalla kaukoputket kohti harvoja auringonkaltaisia kohteita. Se oli kuitenkin perusteltua, koska tunsimme vain yhden esimerkin planeettakunnasta — oman kotimme, Aurinkokunnan.

Yksi eksoplaneettojen metsästyksen pioneereista oli Paul Butler, joka oli aloittanut 120 suunnilleen auringonkaltaisen tähden säännöllisen havainnoinnin Lickin observatoriossa 1980-luvun lopulla (1).


Planeettakunnissa tähti on pääroolissa mutta planeetat, vaikka ovatkin valtavasti pienempiä, vaikuttavat teleskooppeihimme saapuvaan valoon havaittavalla tavalla. Kaikkein ilmeisin tapa, jolla planeetat voivat tulla havaituiksi on, jos ne sattuvat kulkemaan radallaan tähtensä editse ja himmentävät siten jaksollisesti tähdestä tulevaa valoa. Tämän jaksollisen himmenemisen havainnointiin perustuu vaikkapa Kepler ja TESS avaruusteleskooppien menestys. Mutta planeetat myös heiluttavat tähtiään kiertäessään niitä.

Aivan samoin kuin tähti vetää gravitaatiovoiman avulla planeettaa puoleensa, myös planeetta vetää tähteä puoleensa. Kappaleet tanssivat yhteisen massakeskipisteensä ympäri (Kuva 1.). Siksi tähtitieteilijät ovatkin pohtineet jo sadan vuoden ajan miten tähtien pienen planeetoista aiheutuvan heilahtelun oikein voisi havaita. Jos joku tarkkailisi Aurinkoa jotakin lähitähteä kiertävän planeetan pinnalta, olisi mahdollista nähdä Auringon liikkuvan ensisijaisesti kahdentoista vuoden sykleissä ja toissijaisesti 29 vuoden sykleissä, mikä antaisi mahdollisuuden havaita epäsuorasti Jupiterin ja Saturnuksen olemassaolo.

Kuva 1. Aurinkokunnan massakeskipisteen liike suhteessa Aurinkoon. Tarkastellessaan Auringon liikettä, Aurinkokunnan ulkopuolinen havaitsija voisi päätellä planeeettojen kiertävän Aurinkoa. Kuva: Carl Smith, Rubik-wuerfel.

Tähtien tanssimista taivaalla on koetettu havaita jo 1900-luvun alusta lähtien, tarkastellen niiden liikettä taivaankannella, mutta varsinaiset planeettahavainnot tulivat mahdollisiksi vasta, kun tähtitieteilijät ymmärsivät käyttää tähden spektriä liikkeen mittaamiseen. Jos tähdet liikkuvat taivaalla niitä kiertävien planeettojen vetovoiman vuoksi, ne liikkuvat vuoroin meitä kohti ja vuoroin poispäin, ellei planeetan rata satu olemaan täsmälleen taivaan tasossa meidän näkökulmastamme katsottuna. Se olisi varsin epätodennäköinen sattumus ja koskee siksi vain murto-osaa lähitähdistä. Miten tähtien liikkeen sitten voisi havaita?

Otto Struve oli ehdottanut jo 1950-luvulla eksoplaneettojen etsimistä Doppler-spektroskopialla. Ajatus on yksinkertainen ja perustuu Doppler-siirtymään.

Tähden liikkuessa meitä kohti, sen säteilemä valo näyttää aavistuksen sinisemmältä kuin se todellisuudessa on. Samoin, sen liikkuessa pois päin, valo näyttäytyy aavistuksen punaisempana. Planeetan aiheuttama tähden heilahtelu näkyy siis jaksottaisina valon puna- ja sinisiirtyminä, tähden värin hiuksenhienoina näennäisinä muutoksina. Paras tapa muutoksien tarkasteluun on mitata tähden spektri, eli katsoa kuinka voimakkaasti tähti säteilee eri aallonpituuksilla.

Tähden uloin kaasukehä tarjoaa havaintoihin loistavan apuvälineen. Kaasun atomit virittyvät tiettyjen aallonpituuksien säteilystä ja heikentävät siten säteilyn intensiteettiä jokaiselle atomille luontaisilla aallonpituuksilla. Syntyy spektriviivoja, jotka näkyvät spektroskoopin havainnossa mustina katkoksina (Kuva 2.). Näiden spektriviivojen tarkka paikka on helppoa mitata ja niiden paikan heilahtelu vastaa suoraan tähden puna- ja sinisiirtymää ja siten liikettä meitä päin ja meistä poispäin. Spektroskoopit tarjoavat siis mainion tavan tarkastella tähtien heiluntaa vaikkapa niitä kiertävien planeettojen vaikutuksesta.

Kuva 2. Esimerkki siitä, miltä spektrografien kuvaamat spektrit näyttivät 1990-luvulla. Kuva: R. P. Butler, Carnegie.

Juuri tällä radiaalinopeusmenetelmällä löydettiin ensimmäiset auringonkaltaisia tähtiä kiertävät planeetat vuonna 1995. Ensimmäisen löydön tekivät työstään Nobelin palkinnonkin ansainneet Michel Mayor ja Didier Queloz esittelemällä maailmalle tähteä 51 Pegasi kiertävän planeetan (2).

Pitkäaikainen yhteistyökumppanini Paul Butler varmisti 51 Pegasin planeettalöydön omista havainnoistaan vain viikkoa myöhemmin ja raportoi välittömästi löytäneensä kaksi muutakin planeettaa (1,3). Pahaksi onnekseen hän oli havainnut ne ensimmäisenä muttei ollut tiennyt löydöistään edes itse, koska ei ollut kyennyt käsittelemään kaikkia havaintojaan loppuun asti.

Mutta se oli vasta alkua. Vaikka Paul Butler jäi hiuksenhienosti ilman Nobelin palkintoa, hänen käynnistämänsä havaintoprojekti jatkuu edelleen. Ehkäpä paras näyte siitä on artikkelimme vuodelta 2017, jossa julkistimme löytäneemme yli sata uutta planeettakandidaattia Keck teleskoopilla tehtyjen havaintojen avulla (4). Planeettoja on tosiaan kaikkialla. Ja ne kaikki tanssittavat tähtiään.

Lähteet

  1. Marcy et al. 1996. A planetary companion to 70 Virginis. The Astrophysical Journal, 464, L147.
  2. Mayor et al. 1995. A Jupiter-mass companion to a Solar-type star. Nature, 378, 355.
  3. Butler et al. 1996. A planet orbiting 47 Ursae Majoris. The Astrophysical Journal, 464, L153.
  4. Butler et al. 2017. The LCES/Keck precision radial velocity exoplanet survey. The Astronomical Journal, 153, 208.